Statistical mechanics of worm-like polymers from a new generating function.
نویسندگان
چکیده
We present a mathematical approach to the worm-like chain model of semiflexible polymers. Our method is built on a novel generating function from which all the properties of the model can be derived. Moreover, this approach satisfies the local inextensibility constraint exactly. In this paper, we focus on the lowest order contribution to the generating function and derive explicit analytical expressions for the characteristic function, polymer propagator, single chain structure factor, and mean square end-to-end distance. These analytical expressions are valid for polymers with any degree of stiffness and contour length. We find that our calculations are able to capture the fully flexible and infinitely stiff limits of the aforementioned quantities exactly while providing a smooth and approximate crossover behavior for intermediate values of the stiffness of the polymer backbone. In addition, our results are in very good quantitative agreement with the exact and approximate results of five other treatments of semiflexible polymers.
منابع مشابه
Statistical mechanics of double - stranded semi - flexible polymers
We study the statistical mechanics of double-stranded semi-flexible polymers using both analytical techniques and simulation. We find a transition at some finite temperature, from a type of short range order to a fundamentally different sort of short range order. In the high temperature regime, the 2-point correlation functions of the object are identical to worm-like chains, while in the low t...
متن کاملMechanics and statistics of the worm-like chain
The worm-like chain model is a simple continuum model for the statistical mechanics of a flexible polymer subject to an external force. We offer a tutorial introduction to it using three approaches. First, we use a mesoscopic view, treating a long polymer (in two dimensions) as though it were made of many groups of correlated links or “clinks,” allowing us to calculate its average extension as ...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملExact theory of kinkable elastic polymers.
The importance of nonlinearities in material constitutive relations has long been appreciated in the continuum mechanics of macroscopic rods. Although the moment (torque) response to bending is almost universally linear for small deflection angles, many rod systems exhibit a high-curvature softening. The signature behavior of these rod systems is a kinking transition in which the bending is loc...
متن کاملTheory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields.
Recent developments of microscopic mechanical experiments allow the manipulation of individual polymer molecules in two main ways: uniform stretching by external forces and non-uniform stretching by external fields. Many results can be thereby obtained for specific kinds of polymers and specific geometries. In this work, we describe the non-uniform stretching of a single, non-branched polymer m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 12 شماره
صفحات -
تاریخ انتشار 2004